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Abstract

We investigate the effects of large group meetings on the spread of COVID-19 by studying

the impact of eighteen Trump campaign rallies. To capture the effects of subsequent contagion

within the pertinent communities, our analysis encompasses up to ten post-rally weeks for each

event. Our method is based on a collection of regression models, one for each event, that

capture the relationships between post-event outcomes and pre-event characteristics, including

demographics and the trajectory of COVID-19 cases, in similar counties. We explore a total

of 24 procedures for identifying sets of matched counties. For the vast majority of these

variants, our estimate of the average treatment effect across the eighteen events implies that

they increased subsequent confirmed cases of COVID-19 by more than 250 per 100,000 residents.

Extrapolating this figure to the entire sample, we conclude that these eighteen rallies ultimately

resulted in more than 30,000 incremental confirmed cases of COVID-19. Applying county-

specific post-event death rates, we conclude that the rallies likely led to more than 700 deaths

(not necessarily among attendees).

*Department of Economics, Stanford University, Stanford, CA 94305-6072. We would like to thank Mark Duggan
and Guido Imbens for valuable comments and suggestions. All remaining errors are our own.
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1 Introduction

As of this writing, more than 8.7 million Americans have contracted COVID 19, resulting in

more than 225,000 deaths (Dong et al., 2020). The CDC has advised that large in-person events,

particularly in settings where participants do not wear masks or practice social distancing, pose

a substantial risk of further contagion (Centers for Disease Control and Prevention, 2020). There

is reason to fear that such gatherings can serve as “superspreader events,” severely undermining

efforts to control the pandemic (Dave et al., 2020).

The purpose of this study is to shed light on these issues by studying the impact of election rallies

held by President Donald Trump’s campaign between June 20th and September 30th, 2020. Trump

rallies have several distinguishing features that lend themselves to this inquiry. First, they involved

large numbers of attendees. Though data on attendance is poor, it appears that the number of

attendees was generally in the thousands and sometimes in the tens of thousands. Because the

available information about the incidence of COVID-19 is at the county level, the effects of smaller

meetings would be more difficult to detect using our methods. Second, the set of major Trump

campaign events is easily identified. We know whether and when the Trump campaign held a

rally in each county. This property allows us to distinguish between “treated” and “untreated”

counties. Third, the events occurred on identifiable days. They neither recurred within a given

county nor stretched across several days. This feature allows us to evaluate the effects of individual

gatherings. Fourth, rallies were not geographically ubiquitous. As a result, we always have a rich

set of untreated counties we can use as comparators. Fifth, at least through September 2020, the

degree of compliance with guidelines concerning the use of masks and social distancing was low

(Sanchez, 2020), in part because the Trump campaign downplayed the risk of infection (Bella,

2020). This feature heightens the risk that a rally could become a “superspreader event.”

Despite these favorable characteristics, the task of evaluating the effects of Trump rallies on

the spread of COVID-19 remains challenging for the reasons detailed in Section 3. Briefly, our

approach involves a separate analysis for each of eighteen Trump rallies. We identify a set of

counties that are comparable to the event county at the pertinent point in time, based at least

in part on the trajectory of confirmed COVID-19 cases prior to the rally date. We then estimate

the statistical relationship among those counties between subsequent COVID-19 cases and various

conditions, such as pre-existing COVID-19 prevalence and pandemic-related restrictions, along

with demographic characteristics. We use this relationship to predict the post-event incidence of

new confirmed COVID-19 cases for the event county. The difference between the actual incidence

and the predicted incidence is an estimate of the treatment effect. Because the standard error

of each prediction is large, we combine estimates across events to obtain an average treatment

effect. We also perform the same analysis for the event counties focusing on a “placebo event”

occurring 10 weeks before the actual event. This exercise allows us to determine whether our
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method systematically mispredicts the outcomes for event counties, and to evaluate the possible

existence of pre-event trend in “unexplained” cases occurring prior to the event (which, in principle,

could produce spurious treatment effects after the event).

Although our methods involve prediction models, it is important to understand that the nature

of these predictions differ in critical ways from the types of predictions generated by epidemiological

models. In the typical epidemiological analysis, predictions for a collection of jurisdictions between

a fixed point in time, t (often the present), and some subsequent point in time, t′, are based only

on data pertaining to period t and earlier periods (e.g., current and past data). In contrast, our

approach is to predict outcomes in an event jurisdiction between periods t and t′ based not only

on that jurisdiction’s history up until t, but also on the complete histories of comparable counties

through period t′. In other words, our predictions employ “future” data for comparable counties,

whereas epidemiological models do not. Consequently, in contrast to the epidemiologists, we are

not forecasting into an unobserved period of time. Rather, we are observing outcomes within the

forecast period for comparable counties, and making inferences about the county of interest based

on similarities.

For the vast majority of county matching procedures we employ, our estimate of the average

treatment effect across the eighteen rallies implies that they increased subsequent confirmed cases

of COVID-19 by more than 250 per 100,000 residents. In contrast, the pseudo-treatment effects for

the placebo events are small, slightly negative, and statistically insignificant. The striking contrast

between the estimated treatment effects for the actual events and the pseudo-treatment effects for

the placebo events underscores the reliability of our results. Extrapolating the average treatment

effects to the entire sample, we conclude that these eighteen rallies ultimately resulted in more than

30,000 incremental confirmed cases of COVID-19. Applying county-specific post-event death rates,

we conclude that the rallies likely led to more than 700 deaths (not necessarily among attendees).

We are aware of a small handful of related analyses. Dave et al. (2020) focus on the Tulsa

rally. Based on a synthetic control involving comparable counties, they find no elevation in new

cases or deaths. A problem with focusing on a single event is that COVID-19 outcomes are highly

variable, as indicated by the magnitudes of the standard errors of the forecasts in our analysis.

In such settings, measuring the average treatment effect over multiple events, as in our study,

produces more reliable results. Like us, Waldrop and Gee (2020) follow the strategy of focusing on

a collection of rallies,1 but their analysis simply asks whether cases in the three weeks following the

rally were above or below pre-existing trends. Our analysis involves more elaborate forecasts and

encompasses up to 10 weeks of post-event data. The latter difference may be particular important,

in that the effects of a superspreader event may snowball over time. Even so, the study’s conclusions

1Because they focused on a shorter post-event window, they employed data on 22 rally events, whereas we study
18.
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corroborate ours: “...the Trump rallies are often followed by increased community spread of the

coronavirus...”. Analysis in Nayer (2020) points to a similar conclusion.

The paper is organized as follows. Section 2 describes the data used in our analysis, Section 3

details our methods and presents our main results, Section 4 presents additional analyses of highly

impacted counties, and Section 5 concludes.

2 Data

2.1 Trump rallies

We focus on rallies held between June 20th and September 22nd. While the Trump campaign

held many rallies after September 22nd, we do not include them in our analysis for two reasons.

First, because the effects of an event may grow substantially over time as incremental infections

spread, we required at least four weeks of post-event data (excluding the week of the rally). Second,

there are some indications that compliance with public health guidelines, such as the use of masks,

improved at later rallies. While it would be worth evaluating the diminution of treatment effects

resulting from greater compliance, we currently lack sufficient compliance data to conduct that

investigation.

We obtain a list of general election Tump rallies via a regularly-updated Wikipedia list based

on local and national news reports. We verify the date and county of the rally from local news

reports. We manually record from news reports whether the rally was indoors.

Table 1 lists the rallies we include in our analysis, their dates, and whether they were indoor or

outdoor.

2.2 Data on COVID 19

Our data on the incidence of COVID-19 comes from the COVID-19 Data Repository maintained

by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (Dong

et al., 2020). The CSSE collects case and death reports from the CDC and U.S. state and local

governments. The CSSE time series data includes total confirmed cases and deaths from COVID-

19 associated with each Federal Information Processing Standards county code beginning January

22nd, 2020. The frequency of the data is daily, but we use it to construct weekly data series to

reduce noise. We obtain measures of new cases and deaths for each week by differencing these

series. In a small number of cases, the resulting measure of new cases or deaths is negative; we

treat those increments as zero. The CSSE also provides the latitude and longitude for each county,

which we use to compute the distance to the nearest rally county where relevant.2

2Through exploratory analysis, we found no elevation of COVID-19 cases in neighboring counties. However, to
reduce the threat of measurement error from spillovers, we drop all counties within 50 kilometers of an event county.
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Table 1: List of rallies included in the analysis

City Date Indoors City Date Indoors

Tulsa 6/20/2020 Yes Henderson 9/13/2020 Yes
Phoenix 6/23/2020 Yes Mosinee 9/17/2020 No
Mankato 8/17/2020 No Bemidji 9/18/2020 No
Oshkosh 8/17/2020 No Fayetteville 9/19/2020 No
Yuma 8/18/2020 No Swanton 9/21/2020 No
Old Forge 8/20/2020 No Vandalia 9/21/2020 No
Londonberry 8/28/2020 No Pittsburgh 9/22/2020 No
Latrobe 9/3/2020 No Jacksonville 9/24/2020 No
Winston-Salem 9/8/2020 No Newport News 9/25/2020 No
Freeland 9/10/2020 No Middletown 9/26/2020 No
Minden 9/12/2020 No

Notes: Rallies with only three weeks of post-event data in italics.

2.3 Other data

In addition to data on rallies and the spread of COVID-19, we use data on testing, COVID-

related policies, and county-level demographic and election data, which we obtain from a variety of

sources. State-level testing data is provided by the COVID Tracking Project at The Atlantic, which

collects information from state departments of public health. We obtain county-level testing data

for Wisconsin from the state departments of public health. We also use HealthData.gov’s dataset of

COVID-19 State and County Policy Orders to obtain county-level policies, such as shelter-in-place

orders and mask mandates. Finally, we extract several county-level demographics such as racial

and socio-economic compositions from The Census Bureau’s Annual County Resident Population

Estimates and 2016 election results from the MIT Election Data and Science Lab’s 2018 Election

Analysis Dataset.

3 Measurement of Average Treatment Effects

3.1 Methods

Efforts to measure the effects of Trump rallies on the spread of COVID-19 must overcome a

number of significant challenges.

First, the dynamics of COVID-19 are complex. Even the most superficial examination of the

data reveals that the process governing the spread of COVID-19 differs across counties and changes
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over time. To make matters even more challenging, there appears to be substantial cross-county

heterogeneity with respect to the manner in which the dynamic process has evolved over time.

Accordingly, familiar econometric specifications with time and county fixed effects are not able to

accommodate the first-order patterns in the data. Specifications that include interactions between

time fixed effects and a handful of county characteristics perform only marginally better. An entirely

different approach is required.

Second, the effects of rallies are likely heterogeneous. Treatment effects will depend on whether

the rally is indoors or outdoors, the infection rate among attendees, the degree to which infected

individuals were “shedding” the virus, the distribution of infected individuals among rally attendees,

the fraction of rally attendees wearing masks, the degree of social distancing practiced at the rally,

the size of the rally, and precautions taken by attendees after leaving the rally. While the first of

these characteristics (indoor/outdoor) is known, the others are not.3 An additional consideration

is that superspreading likely occurs when circumstances align, which means that the distribution

of treatment effects is likely right-skewed.

In this section, we describe the method we deploy to overcome these challenges. In recognition

of the dimensions of heterogeneity mentioned above, our approach involves a separate analysis for

each rally. First we identify “similar” counties for each event using objective criteria (see Rubin

(2006) or Abadie et al. (2010)). Then we recover the cross-sectional relationship between post-event

outcomes and county characteristics, including pre-existing levels of COVID-19, demographics, and

policy measures. We then use the estimated relationship to predict the outcome for the county

in which the rally occurred. The difference between the actual outcome and the prediction is the

estimated treatment effect. Given the noisiness of this measure for individual rallies, we focus our

attention on the average treatment effect.

3.1.1 Actual events and placebo events

We will use N ≡ {1, ..., N} to denote the set of counties, and T ⊂ N to denote the set of counties

in which Trump rallies took place. For i ∈ T, an actual event consists of the pair (i, t), where t is

the week in which the county i rally occurred. Let E denote the set of actual events. A placebo

event consists of a pair (i, t) such that (i, t+ 10) ∈ E. Let P denote the set of placebo events. We

use the term event to reference either an actual event or a placebo event.

In other words, the placebo event associated with county i always occur 10 weeks before the

actual event. We use these placebo events to determine whether our method implies the existence

of pseudo-treatment effects in the ten weeks leading up to each event. Were we to find such effects,

our measured treatment effects might be attributable to pre-existing trends.

3As we have noted, there is no consistent and reliable data source on rally attendance.
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3.1.2 Matched samples

For each pair of counties i, j ∈ N and week t, we compute a similarity index, sijt = 0. Then, for

each event (i, t) ∈ E∪P, we define the set Sit to consist of the counties with the M smallest values

of sijt, excluding j ∈ T. In other words, Sit consists of the M counties that are most comparable to

county i in week t according to the chosen similarity index. In our empirical analysis, we examine

M ∈ {100, 200}. Accordingly, our matched samples with M = 100 represent roughly 3.2% of all

counties, and those with M = 200 represent roughly 6.4% of all counties.

We explore robustness with respect to multiple measures of similarity. The most important

dimension of comparability is the pre-event trajectory of COVID-19 cases. Letting yit denote new

cases in county i at time t, we define the following class of similarity indexes:

sρijt =

L∑
k=1

ρk−1 (yi,t−k − yj,t−k)
2

For the special case of ρ = 1, this index is the (square of) the Euclidean distance between

(yi,t−1, ..., yi,t−L) and (yj,t−1, ..., yj,t−L). For ρ < 1, it weights more recent outcomes more heavily.

We explore robustness with respect to the following values: ρ ∈ {0.25, 0.5, 0.75, 0.9, 1} and L ∈
{5, 10}.

We also examine the impact of incorporating additional dimensions of comparability. Suppose

we want to ensure comparability across a set of variables (x1it, ..., xRit). These variables could

capture fixed demographic characteristics such as the educational composition of the population,

or alternatively some of them could represent time-varying characteristics. For instance, we might

have xrit = yi,t−r, in which case the matching variables are just the first r lags of new cases, as

above. Our general strategy is to employ similarity indexes of the form

sijt =

R∑
r=1

αrit (xrit − xrjt)2 ,

where the αrit are weights. We construct the weights as follows:

αrit =

 ∑
j∈N\T

(xrit − xrjt)2
−1

Intuitively, this index is a weighted average of the squared discrepancies, where the weight for

the squared discrepancy in each matching variable is inversely proportional to its sample variation

across all counties (other than the event counties). It therefore attaches equal importance to a

one-standard-deviation discrepancy between counties i and j for each matching variables. See, for

example, Rubin (2006) for similar procedures.
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3.1.3 Regressions

Because the counties in Sit are not perfect matches for county i at time t, we estimate regressions

to adjust for their differences. Specifically, for each event (i, t) ∈ T ∪ P and matched set Sit, we

use counties in Sit to estimate an OLS regression relating an outcome variable to a collection of

predictors.

For the county j outcome, we use the total number of new cases following the event or placebo

event (i, t) within an outcome window, t through t+ wit:

Y ijt =

wit∑
w=0

yj,t+w

For the actual events, the duration of the outcome window (wit) is equal to the number of weeks for

which we have data, truncated at 10. For the placebo events, we set wit = 10, so that Yjt measures

the total number of new cases in the ten weeks between the placebo event and the event.

Potential predictors include: yj,t−k (new confirmed COVID-19 cases) for k > 0, new COVID-19

deaths in periods t−k for k > 0, indicators for restrictive policies (mask mandates, shelter-in-place

mandates) in periods t − k for k > 0, population, percent female, percent 65 and over, percent 29

and younger, percent Black/Indican American/Asian/Native American/Hispanic/White, Trump

vote share in 2016, Clinton vote share in 2016, percent foreign born, median household income,

percent unemployed, percent less than high school education, percent less than college education,

and percent rural.

Running OLS regressions with either 100 or 200 observations and such a large collection of

predictors is potentially problematic from the perspective of overfitting. We therefore use the week

t data for all counties in N \ T to estimate LASSO regressions relating Y ijt to the complete set of

predictors. We adjust the penalty parameter until LASSO selects 10 predictors, and until it selects

20 predictors. For all regressions associated with event (i, t) involving 100 observations, we use the

first group of (10) predictors, while for those involving 200 observations we use the second group of

(20) predictors.

3.1.4 Evaluation of treatment effects

For each event (i, t) and matching counties Sit, we use the resulting regression to compute the

fitted value of cumulative new cases within the outcome window for county i, Ŷ iit. We then compute

the standard error of the forecast using the conventional formula:

σfit = σit

√
1 + xi,it(X ′itXit)−1xt,it,
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where σfit is the standard error of the forecast for the county i between t and t + wit, σit is the

standard error of the regression for event (i, t), xi,it is the vector of the predictors used in the (i, t)

regression for county i, and Xit is the matrix of predictors used in the (i, t) regression.

The final step is to compute the average treatment effect across actual events and, separately,

across placebo events, along with the associated standard errors. Following standard practice (see,

for example, Borenstein et al. (2011)), we attach greater weight to counties for which we have more

precise predictions. Accordingly, we obtain the average treatment effect for the actual events, µA,

as follows:

µA =

∑
i∈T

(
Y iit − Ŷ iit

)
σ2
fit

[∑
i∈T

1

σ2
fit

]−1
Noting that county populations are non-overlapping, and that there is only limited overlap between

the data samples used for the various regressions, it is reasonable to treat the forecasts as roughly

independent. Accordingly, the standard error of the estimate is given by

σA =

[∑
i∈T

1

σ2
fit

]− 1
2

So, for example, in the case where the variance of the forecast error is the same for all events (σf ),

we would have σA = 1√
N
σf . The calculation of the mean and standard deviation of the treatment

effect for the placebo events, µP and σP , proceeds analogously.

3.2 Main results

Figure 1 illustrates our results for a base-case variant of our method (shown in blue), as well

as one of the variants we explored (shown in red). Estimated average treatment effects for the

actual events appear on the left, and estimated average treatment effects for the placebo events

appear on the right. The height of each bar represents the incremental number of confirmed cases

per hundred-thousand residents and the whiskers represent 95% confidence intervals. For the base

case, we use 100 matched counties selected on the basis of simple Euclidean distance for ten weekly

lags of confirmed cases per capita. This criterion ensures a close match between the pre-event

COVID-19 trajectories in each event county and each county to which we compare it. As the figure

shows, the estimated average treatment effect is 332 cases per hundred-thousand residents. Because

the standard error of the estimate is just under 90, the 95 percent confident interval ranges from

roughly 150 to just over 500 cases per hundred-thousand residents. While this is a broad range, it

plainly excludes zero. In contrast, the placebo effect (-49.7) is negative, much smaller in magnitude,

and statistically indistinguishable from zero.
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For the second set of estimates shown in Figure 1, we identify matching counties based not only

on ten weekly lags of confirmed cases per capita, but also on three demographic characteristics:

total population, percent less than college educated, and Trump vote share in 2016.4 Placing weight

on other variables inevitably reduces the similarity between the pre-event trajectories of COVID-

19 cases between event counties and matched counties. However, we still find evidence of strong

treatment effects. As the figure shows, the estimated average treatment effect is 261 confirmed

cases per hundred-thousand residents. While the standard errors are a bit larger, zero still lies well

outside the 95% confidence interval. In contrast, the placebo effect (-64.8) is once again negative,

much smaller in magnitude, and statistically indistinguishable from zero.

Figure 1: Total average treatment effects for the rally events and placebo events, by matching
algorithm

Notes: The figure shows the average treatment effect among the 18 treatment counties with at least
4 weeks of data after the rally, either for the actual rally event or for a placebo event 10 weeks
before the actual event. Treatment effects are calculated through comparisons with the 100 closest
control county matches and when matched either by the unweighted euclidean distance of the 10
most recent lags in terms of new confirmed cases per 100,000 or the weighted distance in terms of
cases and demographic characteristics. Error bounds mark the 95% confidence intervals.

Table 2 contains results for 24 variants of our base-case method. As indicated in the first

column, we vary the number of weekly lags of cases per capita (5 and 10) used to match counties,

the inclusion of demographic variables in the calculation of the similarity index (yes or no), the

4We have experimented with other combinations of demographic variables. For example, we tried using the three
variables that were most often selected in a collection of exploratory LASSO regressions (one for each event data)
based on data from all counties. These variables were percent female, percent foreign born, and percent 29 or under.
The results were generally similar.
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weighting across weekly lags of cases per capita, and the number of matched counties (100 and 200).

On the whole, the estimates of average treatment effects (shown in column (1)) are similar, and in

nearly all cases we can reject the null of no effect with 95 percent confidence (based on comparisons

with the corresponding standard errors in column (2)). In no case do we find a positive or significant

placebo effect (see columns (5) and (6)).5

For each variant of our method shown in Table 2, we multiply each county’s population by the

average treatment effect and divide by 100,000 to obtain an estimate of total incremental confirmed

cases for that county. Multiplying by the post-event death rate for the same county,6 we obtain an

estimate of the total increase in deaths. Summing over counties then yields the estimates of total

incremental confirmed cases shown in column (3), and of total incremental deaths in column (4).

Our results suggest that the rallies resulted in more than 30,000 incremental cases and likely led to

more than 700 deaths.

A possible issue is that the same death rate might not apply to baseline cases and incremental

cases. For example, if the increase in confirmed cases were entirely due to a rally-induced increase

in the scope of testing, then total deaths might not rise at all. Of course, in that case, the death rate

(measured as a fraction of cases) would decline. A differences-in-differences calculation reveals that

the discrepancy between the average before-to-after-event change in death rates for event counties

and matched counties is statistically insignificant.7

4 Further analysis of highly impacted counties

In this section, we corroborate our interpretation of the results presented in Section 3.2 by

examining the experience of a few counties which, according to the preceding statistical analysis,

were highly impacted by Trump rallies. This deeper dive serves two purposes. First, it ensures

that the estimated treatment effects are consistent with other data concerning the experiences

of these counties. Second, it allows us to provide additional evidence concerning possible spurious

explanations for our findings, including the hypothesis mentioned at the end of the previous section,

that measured cases rose after rallies because the rallies caused an increase in testing.

Our supplemental analysis employs data on testing rates (tests per capita) and positivity rates

(positive results per test). We focus here on two counties, Winnebago and Marathon, both of which

are located in Wisconsin. There are two reasons for this focus. First, these counties consistently

yield among the highest discrepancies between predicted and actual cases, and consequently make

5As a further robustness test, we also run a variant in which we drop the counties with the highest and lowest
treatment effect. In this variant, we estimate an average treatment effect of 213 confirmed cases per 100,000 (SE:
100.6) and a placebo effect of -78 confirmed cases per 100,000 (SE: 119.4).

6When we have ten weeks of post-event data, we calculate the post-event death rate using seven-week totals,
where total confirmed cases are based on weeks �through t + 6, and total deaths are based on weeks t + 3 through
t + 9. When we have less post-event data, we proceed analogously, but with shorter periods for cases and deaths.

7The differences-in-differences estimate is 0.002, with a standard error of 0.006.
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Table 2: Average treatment effect in terms of confirmed cases per 100,000

Actual Placebo

ATE SD of ATE Total incr. cases Total incr. deaths ATE SD of ATE
(1) (2) (3) (4) (5) (6)

10 lags, M=100 332.01 89.70 38,697 775 -49.65 106.33
ρ=0.9 350.80 92.79 40,887 819 -33.54 106.80
ρ=0.75 291.23 97.71 33,944 680 -34.79 111.69
ρ=0.5 271.09 104.10 31,597 633 -33.34 112.65
ρ=0.25 346.01 117.49 40,328 807 -24.49 112.91
10 lags + Dems. 260.66 101.51 30,381 608 -64.76 78.69
5 lags, M=100 334.03 98.46 38,933 779 -82.33 108.20
ρ=0.9 320.59 101.17 37,366 748 -70.95 110.59
ρ=0.75 306.87 103.34 35,766 716 -78.06 112.23
ρ=0.5 251.43 104.95 29,305 587 -63.94 111.59
ρ=0.25 347.53 123.00 40,506 811 -33.40 113.99
5 lags + Dems. 192.28 93.83 22,410 449 -77.62 78.68
10 lags, M=200 389.58 102.99 45,407 909 -101.21 109.50
ρ=0.9 371.10 101.10 43,253 866 -68.24 109.73
ρ=0.75 332.79 99.17 38,788 777 -84.00 112.99
ρ=0.5 259.34 102.51 30,227 605 -84.91 117.06
ρ=0.25 302.60 121.68 35,269 706 -129.47 120.47
10 lags + Dems. 195.81 112.07 22,822 457 -87.61 85.25
5 lags, M=200 289.14 106.36 33,701 675 -31.80 111.80
ρ=0.9 272.30 106.34 31,738 635 -24.29 111.97
ρ=0.75 260.71 103.63 30,387 608 -44.02 116.60
ρ=0.5 285.04 107.09 33,222 665 -66.33 120.00
ρ=0.25 298.30 123.18 34,768 696 -121.67 121.99
5 lags + Dems. 226.44 108.45 26,392 528 -101.89 82.54

Notes: The table shows the average treatment effect (the standardized mean across counties) in terms
of total number of new confirmed cases per 100,000 in weeks 0-9 after the rally, for both the actual
and placebo events. The sample includes all counties with at least 4 weeks of data after the rally. The
total incremental confirmed cases is the sum of the incremental cases across all treatment counties. The
incremental deaths for county i is the product of the total number of incremental cases in county i and
the death rate in county i after the rally (week 0-9). The total incremental deaths is the sum of the
incremental deaths across all treatment counties.
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important contributions to our estimated average treatment effects. Corroboration with other data

is therefore particularly impactful for these counties. Second, county-level COVID-19 testing data

are readily available for Wisconsin.

Figure 3 shows time series for testing rates and test positivity rates for Marathon (Panel A),

Winnebago (Panel B), and the rest of Wisconsin (Panel C). In each panel, the scale for tests per

100,000 residents is on the left, and the scale for the positivity rate is on the right. The vertical

lines in all three panels indicate the last pre-event week for Marathon county and for Winnebago.

One striking feature of these figures is the sharp statewide increase in testing in the second to last

week of our sample. Similar increases in testing also occurred in the two individual counties.

More interesting patterns emerge when we direct our attention to earlier weeks. Looking at

Panels A and B, we see that in both rally counties, positivity rates rose sharply and quickly after

the rally despite displaying no upward trend prior to the rally. For Marathon county, the increase

in positivity rates started immediately after the rally and continued to climb sharply for several

weeks. For Winnebago county, positivity rates roughly doubled over the first four weeks, and

then continued to climb sharply. Testing did not rise immediately in either county. Increases in

testing followed increases in positivity rates with a lag. Wider testing ultimately brought positivity

rates down, but they remained above their original levels. These patterns are consistent with the

hypothesis that the treatment effects measured in the previous section reflect an increase in the

incidence of the disease, and are inconsistent with the view that wider testing led to increased

detection of cases that would have occurred without the rally.

Panel C shows the aggregate results for Wisconsin counties other than Marathon and Winnebago.

Notice that we do not see comparable spikes in test positivity rates after the dates of the two rallies.

5 Conclusions

Our analysis strongly supports the warnings and recommendations of public health officials

concerning the risk of COVID-19 transmission at large group gatherings, particularly when the

degree of compliance with guidelines concerning the use of masks and social distancing is low. The

communities in which Trump rallies took place paid a high price in terms of disease and death.

13



Figure 2: Testing rates and test positivity rates in Wisconsin over time

Panel A: Marathon

Panel B: Winnebago

Panel C: Other Wisconsin counties

Notes: This figure shows the total new tests per 100,000 per week as well as
the mean positivity rate per week.
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